Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Nat Ecol Evol ; 8(4): 761-776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472432

ABSTRACT

Shared genetic polymorphisms between populations and species can be ascribed to ancestral variation or to more recent gene flow. Here, we mapped shared polymorphisms in Saccharomyces cerevisiae and its sister species Saccharomyces paradoxus, which diverged 4-6 million years ago. We used a dense map of single-nucleotide diagnostic markers (mean distance 15.6 base pairs) in 1,673 sequenced S. cerevisiae isolates to catalogue 3,852 sequence blocks (≥5 consecutive markers) introgressed from S. paradoxus, with most being recent and clade-specific. The highly diverged wild Chinese S. cerevisiae lineages were depleted of introgressed blocks but retained an excess of individual ancestral polymorphisms derived from incomplete lineage sorting, perhaps due to less dramatic population bottlenecks. In the non-Chinese S. cerevisiae lineages, we inferred major hybridization events and detected cases of overlapping introgressed blocks across distinct clades due to either shared histories or convergent evolution. We experimentally engineered, in otherwise isogenic backgrounds, the introgressed PAD1-FDC1 gene pair that independently arose in two S. cerevisiae clades and revealed that it increases resistance against diverse antifungal drugs. Overall, our study retraces the histories of divergence and secondary contacts across S. cerevisiae and S. paradoxus populations and unveils a functional outcome.


Subject(s)
Polymorphism, Genetic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Hybridization, Genetic
2.
Yeast ; 41(3): 87-94, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38099423

ABSTRACT

In poor nitrogen conditions, fission yeast cells mate, undergo meiosis and form spores that are resistant to deleterious environments. Natural isolates of Schizosaccharomyces pombe are homothallic. This allows them to naturally switch between the two h- and h+ mating types with a high frequency, thereby ensuring the presence of both mating partners in a population of cells. However, alteration of the mating type locus can abolish mating type switching or reduce it to a very low frequency. Such heterothallic strains have been isolated and are common in research laboratories due to the simplicity of their use for Mendelian genetics. In addition to the standard laboratory strains, a large collection of natural S. pombe isolates is now available, representing a powerful resource for investigating the genetic diversity and biology of fission yeast. However, most of these strains are homothallic, and only tedious or mutagenic strategies have been described to obtain heterothallic cells from a homothallic parent. Here, we describe a simple approach to generate heterothallic strains. It takes advantage of an alteration of the mating type locus that was previously identified in a mating type switching-deficient strain and the CRISPR-Cas9 editing tool, allowing for a one-step engineering of heterothallic cells with high efficiency.


Subject(s)
Schizosaccharomyces , Schizosaccharomyces/genetics , Reproduction/genetics , Meiosis/genetics , Genes, Mating Type, Fungal
3.
PLoS Genet ; 19(11): e1011012, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37931001

ABSTRACT

The mutational processes dictating the accumulation of mutations in genomes are shaped by genetic background, environment and their interactions. Accurate quantification of mutation rates and spectra under drugs has important implications in disease treatment. Here, we used whole-genome sequencing and time-resolved growth phenotyping of yeast mutation accumulation lines to give a detailed view of the mutagenic effects of rapamycin and hydroxyurea on the genome and cell growth. Mutation rates depended on the genetic backgrounds but were only marginally affected by rapamycin. As a remarkable exception, rapamycin treatment was associated with frequent chromosome XII amplifications, which compensated for rapamycin induced rDNA repeat contraction on this chromosome and served to maintain rDNA content homeostasis and fitness. In hydroxyurea, a wide range of mutation rates were elevated regardless of the genetic backgrounds, with a particularly high occurrence of aneuploidy that associated with dramatic fitness loss. Hydroxyurea also induced a high T-to-G and low C-to-A transversion rate that reversed the common G/C-to-A/T bias in yeast and gave rise to a broad range of structural variants, including mtDNA deletions. The hydroxyurea mutation footprint was consistent with the activation of error-prone DNA polymerase activities and non-homologues end joining repair pathways. Taken together, our study provides an in-depth view of mutation rates and signatures in rapamycin and hydroxyurea and their impact on cell fitness, which brings insights for assessing their chronic effects on genome integrity.


Subject(s)
Hydroxyurea , Saccharomyces cerevisiae , Humans , Hydroxyurea/pharmacology , Saccharomyces cerevisiae/genetics , Sirolimus/pharmacology , Mutation , Genomic Instability/genetics , DNA, Ribosomal/genetics
4.
Algorithms Mol Biol ; 18(1): 11, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537624

ABSTRACT

BACKGROUND: Molecular phylogenetics studies the evolutionary relationships among the individuals of a population through their biological sequences. It may provide insights about the origin and the evolution of viral diseases, or highlight complex evolutionary trajectories. A key task is inferring phylogenetic trees from any type of sequencing data, including raw short reads. Yet, several tools require pre-processed input data e.g. from complex computational pipelines based on de novo assembly or from mappings against a reference genome. As sequencing technologies keep becoming cheaper, this puts increasing pressure on designing methods that perform analysis directly on their outputs. From this viewpoint, there is a growing interest in alignment-, assembly-, and reference-free methods that could work on several data including raw reads data. RESULTS: We present phyBWT2, a newly improved version of phyBWT (Guerrini et al. in 22nd International Workshop on Algorithms in Bioinformatics (WABI) 242:23-12319, 2022). Both of them directly reconstruct phylogenetic trees bypassing both the alignment against a reference genome and de novo assembly. They exploit the combinatorial properties of the extended Burrows-Wheeler Transform (eBWT) and the corresponding eBWT positional clustering framework to detect relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based approaches that need to fix the length k a priori). As a result, they provide novel alignment-, assembly-, and reference-free methods that build partition trees without relying on the pairwise comparison of sequences, thus avoiding to use a distance matrix to infer phylogeny. In addition, phyBWT2 outperforms phyBWT in terms of running time, as the former reconstructs phylogenetic trees step-by-step by considering multiple partitions, instead of just one partition at a time, as previously done by the latter. CONCLUSIONS: Based on the results of the experiments on sequencing data, we conclude that our method can produce trees of quality comparable to the benchmark phylogeny by handling datasets of different types (short reads, contigs, or entire genomes). Overall, the experiments confirm the effectiveness of phyBWT2 that improves the performance of its previous version phyBWT, while preserving the accuracy of the results.

5.
Nat Genet ; 55(8): 1390-1399, 2023 08.
Article in English | MEDLINE | ID: mdl-37524789

ABSTRACT

Pangenomes provide access to an accurate representation of the genetic diversity of species, both in terms of sequence polymorphisms and structural variants (SVs). Here we generated the Saccharomyces cerevisiae Reference Assembly Panel (ScRAP) comprising reference-quality genomes for 142 strains representing the species' phylogenetic and ecological diversity. The ScRAP includes phased haplotype assemblies for several heterozygous diploid and polyploid isolates. We identified circa (ca.) 4,800 nonredundant SVs that provide a broad view of the genomic diversity, including the dynamics of telomere length and transposable elements. We uncovered frequent cases of complex aneuploidies where large chromosomes underwent large deletions and translocations. We found that SVs can impact gene expression near the breakpoints and substantially contribute to gene repertoire evolution. We also discovered that horizontally acquired regions insert at chromosome ends and can generate new telomeres. Overall, the ScRAP demonstrates the benefit of a pangenome in understanding genome evolution at population scale.


Subject(s)
Genome , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Phylogeny , Genomics , Telomere/genetics
6.
Biol Res ; 56(1): 43, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507753

ABSTRACT

For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting in considerable economic losses for the wine industry. In the present work, we took advantage of the "1002 Yeast Genomes Project" population, the most complete catalogue of the genetic variation in the species and a powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have potential applications for the genetic improvement of industrial yeast strains.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/genetics , Wine/microbiology , Fermentation , Polymorphism, Single Nucleotide , Nitrogen
7.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066137

ABSTRACT

Pangenome graphs can represent all variation between multiple genomes, but existing methods for constructing them are biased due to reference-guided approaches. In response, we have developed PanGenome Graph Builder (PGGB), a reference-free pipeline for constructing unbi-ased pangenome graphs. PGGB uses all-to-all whole-genome alignments and learned graph embeddings to build and iteratively refine a model in which we can identify variation, measure conservation, detect recombination events, and infer phylogenetic relationships.

8.
Biomolecules ; 13(3)2023 03 09.
Article in English | MEDLINE | ID: mdl-36979436

ABSTRACT

The yeast petite mutant was first discovered in the yeast Saccharomyces cerevisiae, which shows growth stress due to defects in genes encoding the respiratory chain. In a previous study, we described that deletion of the nuclear-encoded gene MRPL25 leads to mitochondrial genome (mtDNA) loss and the petite phenotype, which can be rescued by acquiring ATP3 mutations. The mrpl25Δ strain showed an elevated SNV (single nucleotide variant) rate, suggesting genome instability occurred during the crisis of mtDNA loss. However, the genome-wide mutation landscape and mutational signatures of mitochondrial dysfunction are unknown. In this study we profiled the mutation spectra in yeast strains with the genotype combination of MRPL25 and ATP3 in their wildtype and mutated status, along with the wildtype and cytoplasmic petite rho0 strains as controls. In addition to the previously described elevated SNV rate, we found the INDEL (insertion/deletion) rate also increased in the mrpl25Δ strain, reinforcing the occurrence of genome instability. Notably, although both are petites, the mrpl25Δ and rho0 strains exhibited different INDEL rates and transition/transversion ratios, suggesting differences in the mutational signatures underlying these two types of petites. Interestingly, the petite-related mutagenesis effect disappeared when ATP3 suppressor mutations were acquired, suggesting a cost-effective mechanism for restoring both fitness and genome stability. Taken together, we present an unbiased genome-wide characterization of the mutation rates and spectra of yeast strains with respiratory deficiency, which provides valuable insights into the impact of respiratory deficiency on genome instability.


Subject(s)
Mutation Rate , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Mutation , Genomic Instability , DNA, Mitochondrial/genetics
9.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36563016

ABSTRACT

Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Telomere/genetics , Telomere/metabolism , Saccharomyces cerevisiae Proteins/genetics , Telomere-Binding Proteins/genetics , Base Sequence
11.
Curr Opin Genet Dev ; 77: 101980, 2022 12.
Article in English | MEDLINE | ID: mdl-36084497

ABSTRACT

Sterile hybrids are broadly considered evolutionary dead-ends because of their faulty sexual reproduction. While sterility in obligate sexual organisms is a clear constraint in perpetuating the species, some facultative sexual microbes such as yeasts can propagate asexually and maintain genome plasticity. Moreover, incomplete meiotic pathways in yeasts represent alternative routes to the standard meiosis that generates genetic combinations in the population and fuel adaptation. Here, we review how aborting meiosis promotes genome-wide allele shuffling in sterile Saccharomyces hybrids and describe approaches to identify evolved clones in a cell population. We further discuss possible implications of this process in generating phenotypic novelty and report cases of abortive meiosis across yeast species.


Subject(s)
Hybridization, Genetic , Saccharomyces , Meiosis/genetics , Saccharomyces/genetics , Genome, Fungal
12.
Elife ; 112022 07 08.
Article in English | MEDLINE | ID: mdl-35801695

ABSTRACT

Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.


Subject(s)
Oxidative Phosphorylation , Superoxides , DNA Damage , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Mitochondria/metabolism , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism , Superoxides/metabolism
13.
Article in English | MEDLINE | ID: mdl-35805774

ABSTRACT

Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated.


Subject(s)
Arsenic , Arsenites , Arsenates/toxicity , Arsenic/toxicity , Arsenites/toxicity , Comparative Genomic Hybridization , Operon , Saccharomyces cerevisiae/genetics
14.
Genes (Basel) ; 13(6)2022 06 10.
Article in English | MEDLINE | ID: mdl-35741808

ABSTRACT

Aging is one of the hallmarks of multiple human diseases, including cancer. We hypothesized that variations in the number of copies (CNVs) of specific genes may protect some long-living organisms theoretically more susceptible to tumorigenesis from the onset of cancer. Based on the statistical comparison of gene copy numbers within the genomes of both cancer-prone and -resistant species, we identified novel gene targets linked to tumor predisposition, such as CD52, SAT1 and SUMO. Moreover, considering their genome-wide copy number landscape, we discovered that microRNAs (miRNAs) are among the most significant gene families enriched for cancer progression and predisposition. Through bioinformatics analyses, we identified several alterations in miRNAs copy number patterns, involving miR-221, miR-222, miR-21, miR-372, miR-30b, miR-30d and miR-31, among others. Therefore, our analyses provide the first evidence that an altered miRNAs copy number signature can statistically discriminate species more susceptible to cancer from those that are tumor resistant, paving the way for further investigations.


Subject(s)
DNA Copy Number Variations , Genetic Predisposition to Disease , MicroRNAs , Neoplasms , Disease Susceptibility , Gene Dosage , Genome , Humans , MicroRNAs/genetics , Neoplasms/genetics
15.
PLoS Genet ; 18(5): e1010047, 2022 05.
Article in English | MEDLINE | ID: mdl-35533184

ABSTRACT

Meiotic recombination is an essential biological process that ensures faithful chromosome segregation and promotes parental allele shuffling. Tetrad analysis is a powerful approach to quantify the genetic makeups and recombination landscapes of meiotic products. Here we present RecombineX (https://github.com/yjx1217/RecombineX), a generalized computational framework that automates the full workflow of marker identification, gamete genotyping, and tetrad-based recombination profiling based on any organism or genetic background with batch processing capability. Aside from conventional reference-based analysis, RecombineX can also perform analysis based on parental genome assemblies, which facilitates analyzing meiotic recombination landscapes in their native genomic contexts. Additional features such as copy number variation profiling and missing genotype inference further enhance downstream analysis. RecombineX also includes a dedicate module for simulating the genomes and reads of recombinant tetrads, which enables fine-tuned simulation-based hypothesis testing. This simulation module revealed the power and accuracy of RecombineX even when analyzing tetrads with very low sequencing depths (e.g., 1-2X). Tetrad sequencing data from the budding yeast Saccharomyces cerevisiae and green alga Chlamydomonas reinhardtii were further used to demonstrate the accuracy and robustness of RecombineX for organisms with both small and large genomes, manifesting RecombineX as an all-around one stop solution for future tetrad analysis. Interestingly, our re-analysis of the budding yeast tetrad sequencing data with RecombineX and Oxford Nanopore sequencing revealed two unusual structural rearrangement events that were not noticed before, which exemplify the occasional genome instability triggered by meiosis.


Subject(s)
DNA Copy Number Variations , Meiosis , Genotype , Germ Cells , Homologous Recombination , Meiosis/genetics , Saccharomyces cerevisiae/genetics
16.
Nat Commun ; 13(1): 2580, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35545616

ABSTRACT

Breeding and domestication have generated widely exploited crops, animals and microbes. However, many Saccharomyces cerevisiae industrial strains have complex polyploid genomes and are sterile, preventing genetic improvement strategies based on breeding. Here, we present a strain improvement approach based on the budding yeasts' property to promote genetic recombination when meiosis is interrupted and cells return-to-mitotic-growth (RTG). We demonstrate that two unrelated sterile industrial strains with complex triploid and tetraploid genomes are RTG-competent and develop a visual screening for easy and high-throughput identification of recombined RTG clones based on colony phenotypes. Sequencing of the evolved clones reveal unprecedented levels of RTG-induced genome-wide recombination. We generate and extensively phenotype a RTG library and identify clones with superior biotechnological traits. Thus, we propose the RTG-framework as a fully non-GMO workflow to rapidly improve industrial yeasts that can be easily brought to the market.


Subject(s)
Plant Breeding , Saccharomyces cerevisiae Proteins , Meiosis , Polyploidy , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
17.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200514, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35634920

ABSTRACT

With the advent of high throughput sequencing technologies, genome-wide association studies (GWAS) have become a powerful paradigm for dissecting the genetic origins of the observed phenotypic variation. We recently completely sequenced the genome of 1011 Saccharomyces cerevisiae isolates, laying a strong foundation for GWAS. To assess the feasibility and the limits of this approach, we performed extensive simulations using five selected subpopulations as well as the total set of 1011 genomes. We measured the ability to detect the causal genetic variants involved in Mendelian and more complex traits using a linear mixed model approach. The results showed that population structure is well accounted for and is not the main problem when the sample size is high enough. While the genetic determinant of a Mendelian trait is easily mapped in all studied subpopulations, discrepancies are seen between datasets when performing GWAS on a complex trait in terms of detection, false positive and false negative rate. Finally, we performed GWAS on the different defined subpopulations using a real quantitative trait (resistance to copper sulfate) and showed the feasibility of this approach. The performance of each dataset depends simultaneously on several factors such as sample size, relatedness and population evolutionary history. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Subject(s)
Genome-Wide Association Study , Saccharomyces cerevisiae , Chromosome Mapping/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Saccharomyces cerevisiae/genetics
18.
Genome Res ; 32(5): 864-877, 2022 05.
Article in English | MEDLINE | ID: mdl-35361625

ABSTRACT

The ecology and genetic diversity of the model yeast Saccharomyces cerevisiae before human domestication remain poorly understood. Taiwan is regarded as part of this yeast's geographic birthplace, where the most divergent natural lineage was discovered. Here, we extensively sampled the broadleaf forests across this continental island to probe the ancestral species' diversity. We found that S. cerevisiae is distributed ubiquitously at low abundance in the forests. Whole-genome sequencing of 121 isolates revealed nine distinct lineages that diverged from Asian lineages during the Pleistocene, when a transient continental shelf land bridge connected Taiwan to other major landmasses. Three lineages are endemic to Taiwan and six are widespread in Asia, making this region a focal biodiversity hotspot. Both ancient and recent admixture events were detected between the natural lineages, and a genetic ancestry component associated with isolates from fruits was detected in most admixed isolates. Collectively, Taiwanese isolates harbor genetic diversity comparable to that of the whole Asia continent, and different lineages have coexisted at a fine spatial scale even on the same tree. Patterns of variations within each lineage revealed that S. cerevisiae is highly clonal and predominantly reproduces asexually in nature. We identified different selection patterns shaping the coding sequences of natural lineages and found fewer gene family expansion and contractions that contrast with domesticated lineages. This study establishes that S. cerevisiae has rich natural diversity sheltered from human influences, making it a powerful model system in microbial ecology.


Subject(s)
Biodiversity , Saccharomyces cerevisiae , Asia , Humans , Phylogeny , Saccharomyces cerevisiae/genetics , Taiwan , Whole Genome Sequencing
19.
Microorganisms ; 10(3)2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35336183

ABSTRACT

The emergence and dissemination of antibiotic resistance threaten the treatment of common bacterial infections. Resistance genes are often encoded on conjugative elements, which can be horizontally transferred to diverse bacteria. In order to delay conjugative transfer of resistance genes, more information is needed on the genetic determinants promoting conjugation. Here, we focus on which bacterial host factors in the donor assist transfer of conjugative plasmids. We introduced the broad-host-range plasmid pKJK10 into a diverse collection of 113 Escherichia coli strains and measured by flow cytometry how effectively each strain transfers its plasmid to a fixed E. coli recipient. Differences in conjugation efficiency of up to 2.7 and 3.8 orders of magnitude were observed after mating for 24 h and 48 h, respectively. These differences were linked to the underlying donor strain genetic variants in genome-wide association studies, thereby identifying candidate genes involved in conjugation. We confirmed the role of fliF, fliK, kefB and ucpA in the donor ability of conjugative elements by validating defects in the conjugation efficiency of the corresponding lab strain single-gene deletion mutants. Based on the known cellular functions of these genes, we suggest that the motility and the energy supply, the intracellular pH or salinity of the donor affect the efficiency of plasmid transfer. Overall, this work advances the search for targets for the development of conjugation inhibitors, which can be administered alongside antibiotics to more effectively treat bacterial infections.

20.
Nat Ecol Evol ; 6(4): 448-460, 2022 04.
Article in English | MEDLINE | ID: mdl-35210580

ABSTRACT

Domestication of plants and animals is the foundation for feeding the world human population but can profoundly alter the biology of the domesticated species. Here we investigated the effect of domestication on one of our prime model organisms, the yeast Saccharomyces cerevisiae, at a species-wide level. We tracked the capacity for sexual and asexual reproduction and the chronological life span across a global collection of 1,011 genome-sequenced yeast isolates and found a remarkable dichotomy between domesticated and wild strains. Domestication had systematically enhanced fermentative and reduced respiratory asexual growth, altered the tolerance to many stresses and abolished or impaired the sexual life cycle. The chronological life span remained largely unaffected by domestication and was instead dictated by clade-specific evolution. We traced the genetic origins of the yeast domestication syndrome using genome-wide association analysis and genetic engineering and disclosed causative effects of aneuploidy, gene presence/absence variations, copy number variations and single-nucleotide polymorphisms. Overall, we propose domestication to be the most dramatic event in budding yeast evolution, raising questions about how much domestication has distorted our understanding of the natural biology of this key model species.


Subject(s)
Domestication , Saccharomycetales , Animals , DNA Copy Number Variations , Genome-Wide Association Study , Life Cycle Stages , Saccharomyces cerevisiae/genetics , Saccharomycetales/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...